Virus SARS-CoV-2 – Diffusione e letalità in relazione alle condizioni meteorologiche e ai livelli di inquinamento

Alcuni commenti a un interessante articolo del professor Nicola Scafetta

Di Luigi Mariani

La correlazione con i fattori meteorologici

Un recentissimo articolo scientifico del professor Nicola Scafetta dell’Università di Napoli (2020), indaga la relazione esistente fra distribuzione globale dell’epidemia da SARS-CoV-2 e i fattori meteorologici, e lo fa considerando il periodo 1 gennaio – 15 aprile 2020, per il quale sono indagati i dati di contagio e di mortalità per quattro aree di studio:

  • La provincia di Wuhan in Cina, areale di prima diffusione del virus
  • L’Italia, seconda patria del virus e che al 20 maggio vanta 3553 casi e 491 decessi per milione di abitanti
  • Gli Stati Uniti d’America, ad oggi la nazione al mondo con più elevata mortalità complessiva, e che al 20 maggio vanta 4792 casi e 286 decessi per milione di abitanti
  • Il mondo intero e le grandi aree continentali europea, asiatica, africana, australiana e americana (tabella 1).

Tabella 1 – Casi e mortalità a livello mondiale e continentale – dati aggiornati al 21 maggio 2020 (fonte ECDC Europe – https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases)

area casi morti casi sul totale % morti sul totale %
Africa 95104 2992 1.92 0.91
Asia 855808 25758 17.25 7.86
America 2245224 133441 45.26 40.70
Europe 1755620 165578 35.39 50.50
Oceania 8523 128 0.17 0.04
Mondo 4960279 327897 100.00 100.00

Per le aree di studio sono state considerate come medie o totali sul periodo di riferimento 1 gennaio – 15 aprile: tre variabili meteorologiche (temperatura dell’aria media, umidità relativa media e velocità del vento media), due variabili epidemiologiche espresse per milioni di abitanti (numero di casi e mortalità) e due variabili accessorie (l’età media della popolazione e l’inquinamento dell’aria). Su queste ultime rammento che l’inquinamento può indebolire l’organismo umano rendendolo più suscettibile alle infezioni e/o stimolare la virulenza del patogeno e la stessa cosa capita per l’età.

Wuhan e Pianura padana: ambienti climaticamente molto simili

Scafetta pone anzitutto in luce la rilevante similitudine climatica esistente fra la Valpadana e l’areale di prima diffusione del virus in Cina (provincia di Wuhan) e lo fa analizzando le temperature giornaliere del periodo 1 gennaio – 15 aprile 2020. Al riguardo giova sottolineare che la rilevante similitudine ha radici nel fatto che la provincia di Wuhan presenta un clima Cfa di Köppen-Geiger (subtropicale umido), la stessa categoria che si registra nella pianura padana (Mariani, 2020). Per inciso voglio ricordare che l’individuazione di areali climaticamente omogenei è uno degli scopi fondanti della climatologa fin da quanto Alexander von Humboldt (1769-1859) tracciò la prima carta delle isoterme globali. In tal senso c’è da augurarsi che in futuro la somiglianza climatica fra i nostri areali e gli areali d’origine di una nuova malattia sia tenuta in debita considerazione in sede di predisposizione dei piani d’allertamento.

L’Europa e gli Stati Uniti

L’autore prosegue poi analizzando le correlazioni esistenti fra fattori meteorologici e casi/mortalità da Covid19. Tali fattori agiscono sia sulla virulenza del patogeno sia sulla suscettibilità dell’ospite umano nei riguardi del contagio e delle polmoniti secondarie. I coefficienti di correlazione di Pearson fra mortalità e variabili meteorologiche sono stati ricavati con il seguente approccio:

  1. Si esprimono temperatura e umidità relativa come scostamenti assoluti dalla media, in modo tale da valutare contemporaneamente sia le anomalie negative sia quelle positive delle variabili meteorologiche
  2. La mortalità viene espressa come logaritmo del numero di morti per milione di abitanti. Tale scelta deriva dall’osservazione secondo cui la risposta alle variabili meteorologiche segue una legge di tipo esponenziale.

In tal modo l’autore ha ottenuto:

Per la mortalità in Italia: un r di Pearson di -0,49 per la temperatura, di -0,37 per l’umidità relativa e di -0.67 per la velocità del vento.

Per la mortalità negli USA: un r di Pearson di -0,23 per la temperatura, di -0,27 per l’umidità relativa e di -0.14 per la velocità del vento. Tali valori salgono rispettivamente a -0,34, -0,28 e -0,17 se si esclude dai dati la Louisiana, per la quale il numero di contagi è esploso a causa dei festeggiamenti del carnevale di New Orleans protrattisi per circa un mese.

Dall’insieme delle analisi effettuate l’autore deduce che, tanto in Italia quanto negli USA, la massima mortalità da virus si verifica per temperature comprese fra 4 e 12°C, umidità relative fra 60 e 80% e basse velocità del vento. Si tratta di fattori tutti favorevoli al mantenersi nel tempo delle goccioline emesse con la respirazione, tosse e starnuti e che nel caso di persone contagiate sono ricche di propaguli del virus.

La correlazione con gli inquinanti

Ciò fatto Scafetta passa ad analizzare come possibile co-fattore la correlazione esistente fra l’inquinamento dell’aria e la diffusione / letalità del virus, giungendo alla conclusione che su scala mondiale la correlazione è negativa e cioè che si assiste al fatto paradossale che le zone più inquinate sono anche le meno esposte al virus.  In Italia il paradosso si nota ad esempio confrontando la situazione più critica della Repubblica di San Marino (meno inquinata ma più fredda) e quella meno critica delle città vicine come Rimini (più inquinata ma più calda). Un paradosso analogo è stato evidenziato in un altro articolo scientifico (Bontempi, 2020) in cui analizzando per il periodo 10 febbraio-27 marzo 2020 i dati di infezione da Covid19 e i livelli di PM10 in provincie della Lombardia (Brescia, Bergamo, Cremona, Lodi, Milano, Monza-Brianza, Pavia) e del Piemonte (Alessandria, Vercelli, Novara, Biella, Asti e Torino) si evidenzia che le città piemontesi, pur manifestando più gravi eventi di inquinamento da PM10 rispetto alle città lombarde, hanno mostrato un numero inferiore di casi.

SARS-CoV-2 vs inquinanti – il perché della correlazione negativa

Di fonte al sussistere di una correlazione negativa fra diffusione / letalità del virus e inquinamento, Scafetta esclude che inquinanti come PM10 e PM2,5 che sono per loro natura in grado di indebolire l’apparato respiratorio possano paradossalmente proteggerci dal virus e tende invece a spiegare il fenomeno con il fatto che i fattori meteorologici dominano di gran lunga il fenomeno. Questo perché

i principali vettori del virus non sono gli aerosol, i particolati (PM10 o PM2.5) o altri tipici inquinanti ma, piuttosto, le goccioline d’acqua che sono espirate da persone infette (soffiandosi il naso, tossendo, starnutendo o respirando) e la cui dinamica e persistenza nell’aria è strettamente dipendente dalle condizioni meteorologiche del luogo come temperatura, umidità relativa e velocità del vento.

Inoltre, temperature mediamente più fredde determinano le abitudini delle persone promuovendo ad esempio la tendenza a stare in luoghi chiusi e poco areati dove è più facile infettarsi. Aggiungo che qualcosa di analogo accadrebbe per l’influenza, che nel periodo estivo, allorché si registra la sua sparizione dalle latitudini medio-alte, si conserverebbe in “serbatoi” tropicali ove le persone di infetterebbero durante la lunga fase piovosa monsonica, nel corso della quale si tende maggiormente a permanere in ambienti chiusi e a stretto contatto (Fuhrmann, 2010; Tamerius et al., 2011).

Conclusioni

L’articolo è senza dubbio interessante per la vastità dell’affresco delineato e la grande chiarezza espositiva. L’autore peraltro definisce intervalli di temperatura, di umidità relativa e di ventosità favorevoli alla suscettibilità dell’ospite e/o alla virulenza del virus che propone come criteri per individuare il rischio potenziale nel corso dell’anno nelle diverse aree del globo e a tal fine presenta alcuni elaborati cartografici globali.

Da parte mia ho cercato di approfondire ulteriormente la questione correlando i dati di mortalità statunitensi e italiani con due variabili geografiche (latitudine e longitudine). Ho così scoperto che sia per l’Italia sia per gli USA la correlazione con la latitudine media di regioni e stati (per USA espressa come scarto assoluto dalla media, per Italia come latitudine semplice, perché la relazione è monotona con massima mortalità al Nord) è sensibilmente più robusta della correlazione con la temperatura. Più nello specifico ho trovato un r di Pearson di 0,86 per l’Italia e di 0,44 per gli USA.

Come spiegare tale fenomeno? L’idea che mi sono fatto dopo averne discusso anche con il professor Scafetta è che la temperatura media di un periodo lungo (gennaio-aprile) non sia un descrittore sufficientemente accurato. La cosa più immediata da fare potrebbe allora essere quella di mettere a punto un modello che, sfruttando le interessanti indicazioni fin qui ottenute da Scafetta, operi con passo giornaliero in modo da descrivere nel modo più efficace gli effetti sui livelli di infezione dei fattori meteorologici, che sono per loro natura caratterizzati da una elevata variabilità intergiornaliera.

Bibliografia

  • Scafetta N.: Distribution of the SARS-CoV-2 Pandemic and Its Monthly Forecast Based on Seasonal Climate Patterns, International  Journal  of Environmental Research and Public Health, 2020, 17, 3493. https://www.mdpi.com/1660-4601/17/10/3493
  • Bontempi E., 2020.  First data analysis about possible COVID-19 virus airborne diffusion due to air particulate matter (PM): the case of Lombardy (Italy), Environmental Research, https://doi.org/10.1016/j.envres.2020.109639.
  • Fuhrmann C., 2010. The Effects of Weather and Climate on the Seasonality of Influenza, Geography Compass, 4/7 (2010): 718–730, 10.1111/j.1749-8198.2010.00343.x
  • Mariani L. 2020 Effetti stagionali sulle malattie da Coronavirus – Alcune riflessioni su COVID19 fondate su bibliografia recente http://www.climatemonitor.it/?p=52548
  • Tamerius etal 2011 Global Influenza Seasonality: Reconciling Patterns across Temperate and Tropical Regions, Environmental Health Perspectives, volume 119, number 4, April 2011
Related Posts Plugin for WordPress, Blogger...Facebooktwittergoogle_pluslinkedinmail
Licenza Creative Commons
Quest'opera di www.climatemonitor.it è distribuita con Licenza Creative Commons Attribuzione - Non commerciale 4.0 Internazionale.
Permessi ulteriori rispetto alle finalità della presente licenza possono essere disponibili presso info@climatemonitor.it.

Author: Luigi Mariani

Share This Post On

7 Comments

  1. Massimo lupicino dare la sola responsabilità alla politica ok non va bene ma neanche solo a una questione metereologica…se parliamo di politica lo stato ha le sue colpe e non per dire che lo stato è solo SUD perché anche se lo fosse e lo è non cambia…ma tanto per quanto ha gestito l’emergenza iniziale lasciando il nostro paese a “porto di mare” che non per dire ma ha agevolato e non poco la diffusione del virus, secondo, se presa singolarmente anche la Lombardia ha le sue colpe, soprattutto riguardo alla gestione dell’emergenza in quella nota clinica privata riabilitativa dell’ex furegoni.. spero di far capire di chi sto parlando e colui non è certo un uomo del sud…al contrario… perciò se parliamo di responsabilità ce le hanno TUTTI e fare un distinguo nord/sud a me pare un esca per distrarre dal vero problema..ovvero che nessuno vuol prendersi la responsabilità della gestione sia di stato che tutto quello che gli va dietro..anche la sanità

    Post a Reply
  2. Grazie a Luigi, sempre chiarissimo e didascalico nei suoi post, e naturalmente al professor Scafetta, la cui incursione in un ambito non strettamente climatico conferma il suo approccio privo di pregiudizi e non allineato alla narrativa dominante.

    Da non addetto ai lavori, la correlazione climatica col Covid19 mi e’ sempre apparsa rilevante. Le similitudini climatiche tra Wuhan e la Lombardia, ma immagino anche Daegu in Corea del Sud (Cfa per Koppen) erano piuttosto evidenti. Cosi’ come l’estendersi tardivo del contagio ad aree a clima piu’ freddo (vedi Russia).

    A trarre in inganno (come per tante altre cose) e’ stata la OMS che nel contraddirsi con cadenza praticamente quotidiana aveva comunque eliminato la possibilita’ che il virus si potesse trasmettere in ambienti esterni, o attraverso sistemi di condizionamento aria etc. Salvo essere contraddetta da studi successivi.

    Se il contagio in ambienti esterni e’ possibile, allora e’ assolutamente ragionevole che in condizioni di aria stagnante e temperature favorevoli, il virus permanesse nell’aria in ambienti affollati e potesse essere trasmesso di conseguenza. La combinazione del fattore climatico con la concentrazione di un gran numero di persone in uno stadio di calcio (partita dell’Atalanta) avrebbe creato il mix perfetto per il disastro di Bergamo.

    Ovvio che laddove la polemica politica spicciola preferisce ridurre la questione alla responsabilita’ del singolo amministratore (Lombardia cattiva/ incapace/assassina, Sud Italia esempio di magnifica amministrazione), studi come quelli del Professor Scafetta non troveranno orecchie disposte ad ascoltare. Cosa alla quale Scafetta del resto e’ abituato da molto tempo, relativamente ai suoi studi in ambito climatico.

    Post a Reply
  3. LUIGI MARIANI

    aspettando novembre…

    Post a Reply

  4. la massima mortalità da virus si verifica per temperature comprese fra 4 e 12°C, umidità relative fra 60 e 80% e basse velocità del vento

    Ma che senso ha questa correlazione visto che in inverno le persone si incrociano in locali chiusi e riscaldati e non all’aperto?

    Post a Reply
  5. no,no,no
    correlazioni, solo ed esclusivamente correlazioni…
    ma così la scienza non progredisce: serve il nesso causa-effetto.
    Perchè non si tiene conto dei rapporti sociali?
    Degli interscambi sociali, economici, politici?
    Si prendono, al solito, degli argomenti e li si correlano.
    Eh no, non è scienza questa!
    é ciarpame ideologico.
    Qui abbiamo a che fare con un virus che si trasmette con il contatto tra persone veicolato dagli aereosol di saliva. Questo è il nesso causa effetto.
    Niente viaggi su particolato inquinante, niente a che vedere con il clima, niente a che fare con ipotesi ambientaliste.

    Post a Reply
  6. Il clima sub-tropicale della pianura padana spero che sia un refuso altrimenti siamo oramai vittime della sindrome di Stoccolma e ci siamo consegnati al Gretismo imperante.

    Post a Reply
    • Franco, Stoccolma è lontana e di sindromi per ora ci basta quella attuale. La definizione di Koppen è esattamente quella e risale agli anni ’30, quando il mondo era comunque già parecchio impazzito, ma almeno non si vaneggiava sul clima. Riporto per chiarezza e per futura memoria del fatto che sarebbe bene documentarsi un po’ prima di pensare di aver visto il diavolo.
      A humid subtropical climate is a type of climate.It has hot, humid summers and warm, mild or cool winters. In the Köppen climate classification, they are split into Cfa when there is no dry season and Cwa when there are dry winters.. Examples are Atlanta, Brisbane, Buenos Aires, Durban, Milan, Shanghai, and Tokyo, Texas and Virginia (https://simple.wikipedia.org/wiki/Humid_subtropical_climate)”
      gg

Rispondi a Andrea Annulla risposta

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Questo sito usa Akismet per ridurre lo spam. Scopri come i tuoi dati vengono elaborati.

Translate »